






and the protein molecules produced per mRNA
is given by b = k2/g1. It was shown theoretically
(5, 26) that, under the steady-state condition of
Poissonian production of mRNA and an expo-
nentially distributed protein burst size, as previ-
ously observed (8, 17), Eq. 1 results in a gamma
distribution of protein copy numbers, x, which is
normalized by the average cell volume.

pðxÞ ¼ xa−1e−x=b

GðaÞba ð2Þ
Here, Г is a gamma function. The gamma dis-
tribution has the property that a is equal to the
inverse of noise (s2p=m

2
p) and b is equal to the Fano

factor (s2p=mp), where s
2
p and mp are the variance

and mean of the protein number distributions,
respectively. Specific cases have provided exper-
imental support for gamma distribution, but it has
not been verified in a system-wide manner (17).

The distributions for 1009 out of the 1018
strains can be well fit by the gamma distribution,
Eq. 2 (fig. S20) (18). Consistent with the gamma
distribution, the observed distributions are skewed
with the peak at zero for low-abundance proteins
and have nonzero peaks for high-abundance
proteins (Fig. 1, C to E). We note that the bimodal
distribution of lac permease was observed in E.
coli under certain inducer concentrations (23, 27).
We did not observe clear bimodal distributions
among the 1018 strains under our growth con-
ditions, which indicates that bimodal distributions
are generally rare.

We note that an alternative mathematical so-
lution to Eq. 1 gives a negative binomial dis-

tribution of protein copy numbers (26). However,
the gamma distribution offers a more robust fit of
experimental data at low expression levels,
because the negative binomial fits are very sen-
sitive to measurement error (18). The two dis-
tributions have similar fitting at high expression
levels. Other functions, such as log-normal dis-
tributions, have been used phenomenologically
to fit unimodal distributions (10, 18). However,
the gamma distribution fits better than the log-
normal distribution for proteins with low expres-
sion levels (fig. S20) (18) and fits similarly well
for proteins with high expression levels. Most
important, the gamma distribution allows extrac-
tion of dynamic information from easy measure-
ments of the steady-state distribution at low
expression levels. The a and b values and the
goodness of fits for the 1018 strains are given in
table S6.

Global scaling of intrinsic and extrinsic protein
noise. The protein noise (h2p ≡ s2p=m

2
p) exhibits

two distinct scaling properties (Fig. 2B). Below
10 molecules per cell, h2p is inversely proportional
to protein abundance, indicative of intrinsic noise.
In contrast, at higher expression levels (>10
molecules per cell), the noise reaches a plateau of
~0.1 and does not decrease further, which sug-
gests that each protein has at least 30% variation
in its expression level.

For proteins expressed at low levels, simple
Poisson production and degradation of mRNA
and protein, commonly termed intrinsic noise,
are sufficient to account for the observed scaling
of s2p=m

2
pº1=mp (Fig. 2B) (10, 11, 28–30). This

scaling property has also been observed for
highly expressed yeast proteins (10, 11). We
verified Poisson kinetics by monitoring real-
time protein production in single cells for sev-
eral genes whose expression levels were low
(table S4) (18); the result agrees with previous
work on the repressed lac operon (8, 17). The
observed noise is always greater or equal to 1/mp,
which suggests that specific regulatory methods
do not decrease noise substantially below this
limit.

For abundant proteins, the 1/mp scaling no
longer applies, and a large noise floor overwhelms
the intrinsic noise contribution (Fig. 2B). This
means that the interpretation of the two parame-
ters a ¼ m2p=s

2
p and b ¼ s2p=mp as the burst

frequency (k1/g2) and burst size (k2/g1) applies
well only at low expression levels, whereas the
protein distributions at high expression levels are
dominated by other factors extrinsic to the above
model. We found that the noise floor does not
result from cell size effects, nor did it arise from
measurement noise (18).

We attribute the additional noise to extrinsic
noise (3), that is, the slow variation of the values
of a and b, which we confirm with real-time
observation of protein levels for four randomly
selected high-copy library strains. The high-
expression noise fluctuates more slowly than the
cell cycle (Fig. 2C) (18), so that the rate constants
in Eq. 1 can be considered to be heterogeneous
among cells.

If we assume that static or slowly varying
heterogeneities of a and b exist with distribu-
tions f (a) and g(b), respectively, the protein
distribution is

pðxÞ ¼
Z∞

0

Z∞

0

xa−1e−x=b

GðaÞba f ðaÞgðbÞdadb ð3Þ

Even if the normalized variances of f (a) and g(b),
h2a and h

2
b, are 0.1, Eq. 3 can still be approximated

as a gamma distribution, which explains the
generality of the gamma distribution fit of the
data (18).

The noise plateau in Fig. 2B can be explained
by calculating the expected noise from Eq. 3
(18, 26, 31)

h2p ¼
〈b〉þ 〈b〉h2b

mp
þ h2a þ h2ah

2
b þ h2b ð4Þ

The extrinsic noise in the last three terms in Eq. 4
might originate from fluctuations in cellular
components—such as metabolites, ribosomes,
and polymerases (30, 32)—and dominates the
noise of high-copy proteins (mp >>1, Eq. 4).

We further demonstrate that the extrinsic
noise is global to all high-expression genes by
analyzing the correlations between expression
levels of 13 pairs of randomly selected genes.
Using YFP and red fluorescent protein (RFP)
fusions as a pair of reporters (Fig. 2D), we
observed statistically significant correlations
between the expression levels of all gene pairs,

Table 1. Trends in expression levels and protein localization. Table of Z scores of subsets of gene classes
characterized by protein and RNA mean, RNA lifetime, a, b, ratio of fluorescence detected on the edge
compared with that on the inside of the cell (E/I), and the degree of punctate protein localization (DP).
Leading strand corresponds to transcription in the same direction as the replication fork. PPI indicates
protein-protein interactions. Z scores of more than 3 (indicated by red) represent a significantly larger
value compared with the whole-genome distribution with >99.9% confidence; Z scores less than –3
(indicated by blue) represent a significantly smaller value.

Category n Mean a b E/I DP Mean Lifetime

All 1018 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Essential gene 121 7.54 8.70 5.34 -2.19 -3.16 5.61 1.38

Nonessential gene 894 -2.74 -3.16 -2.02 0.74 1.30 -1.99 -0.32

Enzyme 410 3.98 4.28 1.85 -5.45 -3.04 3.30 3.15

Translation 17 4.04 3.36 3.30 -0.86 -3.52 3.30 -2.44

Turnover, degradation 13 3.05 3.60 2.08 -0.99 -1.76 2.37 2.14

Transcription factor 98 0.61 1.27 0.71 -2.95 4.29 -0.53 -2.53

Transporter 88 -0.84 0.45 -1.44 7.78 0.96 2.28 3.29

Lagging strand 425 -1.42 -1.95 -0.82 0.74 -0.07 -4.42 -3.63

Leading strand 593 1.12 1.62 0.61 -0.64 0.02 3.96 3.17

Gene length < 500 bp 193 4.06 1.09 3.34 -1.06 -2.98 2.67 -1.65

Gene length >= 500 bp 825 -1.92 -0.55 -1.72 0.57 1.45 -1.26 0.73

Known PPI 603 3.73 3.75 1.37 -3.69 -3.77 1.90 0.58

No known PPI 415 -4.68 -4.65 -1.73 4.28 4.43 -2.25 -0.61

Protein RNA
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which confirmed the existence of a global noise
factor. The observed correlation is quantitatively
predicted by the observed noise floor (18).

Single-molecule RNA counting. To examine
single-cell mRNA expression, we performed
fluorescence in situ hybridization (FISH) with
single-molecule sensitivity (33) (Fig. 3A), using
a single universal Atto594-labeled 20-oligomer
nucleotide probe targeting the yfp mRNA in our
library. Because the same probe is used for all
strains, the optimized hybridization efficiency is
unbiased for every measured gene (18). We
confirmed the validity of our transcript measure-
ments with RNA-seq (table S6) (18).

We show that the YFP (yellow) and the
mRNA (red) of the same gene can be simulta-
neously detected, and spectrally resolved,within a
single fixed cell (Fig. 3B). Because of their low
copy numbers, mRNA molecules are sparsely
distributed within a cell, independent of YFP
locations. By measuring the intensity of each
fluorescent spot and counting the number of spots
per cell, we determined mRNA copy numbers for
individual cells. We used this single-molecule
FISH method to quantify mRNA abundance and
noise for 137 library strains with high protein
expression (>100 proteins per cell).

At the ensemble level, the mean mRNA
abundances among these 137 genes range from
0.05 to 5 per cell, and are moderately correlated
with the corresponding mean protein expression
level at the gene-by-gene basis (correlation
coefficient r = 0.77) (Fig. 3C). The lack of
complete correlation, as reported previously in
other organisms, is often attributed to differences
in posttranscriptional regulation. Here, with the
ability to determine the absolute number of mole-
cules per cell, we determined the ratio between
themean protein abundance and themeanmRNA
abundance to range from 102 to 104.

At the single-cell level, the mRNA copy num-
ber distributions were broader than the Poisson
distributions expected by the random generation
and degradation of transcripts with constant rates
(18). The mRNA noise scales in inverse propor-
tion to the mean mRNA abundance (Fig. 3D), but
mRNA Fano factor values (s2m=mm), are close to
~1.6 (Fig. 3E), rather than unity, as expected for
the Poissonian case. We excluded gene dosage
effects by gating with the cell size to select the
cells that have not yet gone through chromosome
replication (18). The non-Poisson mRNA distri-
butions indicate that the rate constant for mRNA
generation or degradation fluctuates on a time
scale similar to or longer than the typical mRNA
degradation time, which has an average of ~5 to
10 min for our growth condition (18).

Simultaneous RNAand proteinmeasurements
in single cells. We now examine the extent to
which the mRNA copy numbers and the pro-
tein levels are correlated in the same cells. We
quantified single-cell mRNA and protein levels
simultaneously (Fig. 3B). Figure 4A shows a
two-dimensional scatter plot, in which each cell
is plotted as a dot with its mRNA and protein

levels on the x and y axes, respectively, for the
translation elongation factor EF-Tu in the TufA-
YFP strain. mRNA and protein copy numbers
in a single cell are not correlated (r = 0.01 T
0.03, SEM, n = 5447). In fact, among many dif-
ferent highly expressed strains surveyed, the
correlation coefficients are all centered on zero
(Fig. 4B), which indicates a general lack of
mRNA-protein correlation of the same gene within
a single cell.

The lack of mRNA-protein correlation can
be explained by the difference in mRNA and pro-
tein lifetime. In E. coli, mRNA is typically de-
graded within minutes (table S6) (18), whereas
most proteins, including fluorescent proteins, have
a lifetime longer than the cell cycle (18, 34). As
a result, the mRNA copy number at any instant
only reflects the recent history of transcription ac-
tivity (a few minutes), whereas the protein level
at the same instant represents the long history of
accumulated expression (time scale of a cell cy-
cle). However, additional factors such as extrinsic
translational noise are necessary to explain fully
the zero mRNA-protein correlation we observe
(18). We note that the observed lack of correla-
tion arises because the experiment only measured
the copy numbers of protein and mRNA present
at the moment of fixation of a single cell. This is
not contradictory to the central dogma, which
suggests that the mRNA level integrated over a
long period of time should correlate with the
protein level produced in the same cell, which is
consistent with the notable correlation between
the mRNA and protein levels averaged for many
cells (Fig. 3C, 11). However, our result offers a
cautionary note for single-cell transcriptome
analysis and argues for the necessity for single-
cell proteome analysis.

Correlation of expression properties with bi-
ological factors. The correlation between the
expression parameters and selected gene char-
acteristics is shown in Fig. 5. Small a values
correspond to a narrow range of b values, and
large a values correspond to a wide range of b
values (Fig. 5A). Highly expressed proteins
(mean > 10) had high b values, whereas low-
expression proteins had b values of about 1 (Fig.
5B). The protein expression levels had a weak
correlation with the codon adaptation index
(CAI, r = 0.42), but had little correlation with
GC content (r = –0.06) and the mRNA lifetime
(r = 0.08). The a and b values showed moderate
dependence on the chromosome position (Fig.
5F). The correlation coefficients and Z scores
between these two and additional parameters are
summarized in table S2.

In addition, we characterized the statistical
bias of the expression and localization parameters
for functional gene categories, as measured by a
Z score in Table 1 and table S3. Some functional
categories are strongly correlated with parame-
ters. For example, essential proteins have a strong
correlation with high a (Z = 7.5) and high b (Z =
5.3). As expected, membrane transporters
showed a high edge/inside ratio (Z = 7.3), and

transcriptional repressors indicated high punctate
localization (Z = 4.1). Proteins with no known
protein-protein interactions have significantly
reduced expression (Z = –4.7). We also found
that shorter open reading framesmay have higher
protein expression levels (Z = 4.1). RNA
expression tends to be higher for genes transcribed
from the leading strand parallel to the movement
of the replication fork (Z = 4.0). Thus, expression
and localization properties can be significantly
correlated with functional properties.

Comparison between E. coli and yeast. Pro-
tein abundance and noise have been investigated
in yeast with flow cytometry for >2500 high-
abundance proteins (10, 11). The single-molecule
sensitivity in single bacterial cells allowed us to
characterize the full range of protein copy num-
bers in E. coli, which has not been realized in
yeast. We found that E. coli proteins generally
had larger noise and Fano factors than yeast
proteins, even for those present at similar copy
numbers (fig. S6) (18). A noise plateau due to
extrinsic factors is present for both, but the ex-
trinsic noise is larger in E. coli.

Conclusion. We have provided quantitative
analyses of both abundance and noise in the
proteome and transcriptome on a single-cell level
for Gram-negative bacteria E. coli. Given that
some proteins and most mRNAs of functional
genes are present at low copy numbers in a bac-
terial cell, the single-molecule sensitivity afforded
by our measurements is necessary for understand-
ing stochastic gene expression and regulation. We
discovered large fluctuations in low-abundance
proteins, as well as a common extrinsic noise in
high-abundance proteins. Furthermore, we found
that, in a single cell, mRNA and protein levels for
the same gene are completely uncorrelated. This
result highlights the disconnect between proteome
and transcriptome analyses of a single cell, as
well as the need for single-cell proteome anal-
ysis. Taken together, a quantitative and integral
account of a single-cell gene expression profile
is emerging.
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Tissue-Engineered Lungs for
in Vivo Implantation
Thomas H. Petersen,1,2 Elizabeth A. Calle,1 Liping Zhao,3 Eun Jung Lee,3 Liqiong Gui,3

MichaSam B. Raredon,1 Kseniya Gavrilov,4 Tai Yi,5 Zhen W. Zhuang,6

Christopher Breuer,5 Erica Herzog,6 Laura E. Niklason1,3*

Because adult lung tissue has limited regeneration capacity, lung transplantation is the primary therapy
for severely damaged lungs. To explore whether lung tissue can be regenerated in vitro, we treated lungs
from adult rats using a procedure that removes cellular components but leaves behind a scaffold of
extracellular matrix that retains the hierarchical branching structures of airways and vasculature. We
then used a bioreactor to culture pulmonary epithelium and vascular endothelium on the acellular lung
matrix. The seeded epithelium displayed remarkable hierarchical organization within the matrix, and
the seeded endothelial cells efficiently repopulated the vascular compartment. In vitro, the mechanical
characteristics of the engineered lungs were similar to those of native lung tissue, and when implanted
into rats in vivo for short time intervals (45 to 120 minutes) the engineered lungs participated in gas
exchange. Although representing only an initial step toward the ultimate goal of generating fully
functional lungs in vitro, these results suggest that repopulation of lung matrix is a viable strategy
for lung regeneration.

Lung diseases account for some 400,000
deaths annually in the United States (1).
Human lungs do not generally repair or

regenerate beyond themicroscopic, cellular level.
Currently, the only way to replace lung tissue is
to perform lung transplantation, which is an ex-
pensive procedure that achieves only 10 to 20%
survival at 10 years and one that is hampered by a
severe shortage of donor organs (2). Recently,
techniques have been developed to quantitatively
decellularize complex organs such as heart, liver,
and kidney (3–5). Acellular matrices can provide
attractive scaffolds for repopulation with lung-
specific cells for lung engineering because the
extracellular matrix template should contain ap-
propriate three-dimensional (3D) architecture and

regional-specific cues for cellular adhesion. To
be functional in vivo, an engineered lung should
(i) contain lung-specific cells, (ii) display the

branching geometry of the airways and contain
a perfusing microvasculature, (iii) provide bar-
rier function to separate blood from air, and (iv)
have mechanical properties that allow ventila-
tion at physiological pressures.

Here, we describe our progress toward the
construction of a functional tissue-engineered
lung, using rat as a model system. Our approach
is summarized in Fig. 1. We first decellularized
native lung tissue in order to remove all immu-
nogenic cellular constituents (Fig. 1, A and B).
We found that after careful decellularization, the
tissue retained its alveolar micro-architecture, its
ability to function as a barrier to particulates, and
its tissue mechanics. Repopulation of the acellular
lung matrix with mixed populations of neonatal
lung epithelial cells resulted in regional-specific
epithelial seeding in correct anatomic locations. To
enhance the survival and differentiation of lung
epithelium, we cultured the matrix in a bioreactor
designed tomimic certain features of the fetal lung
environment, including vascular perfusion and
liquid ventilation (Fig. 1, C and D) (6). Lastly, we
tested the functionality of the engineered lung
tissue by implanting it for short time periods in a
syngeneic rat model (Fig. 1E).
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Medicine, Yale University, New Haven, CT 06520, USA.
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Fig. 1. Schema for lung tissue engineering. (A) Native adult rat lung is cannulated in the pulmonary
artery and trachea for infusion of decellularization solutions. (B) Acellular lung matrix is devoid of cells
after 2 to 3 hours of treatment. (C) Acellular matrix is mounted inside a biomimetic bioreactor that allows
seeding of vascular endothelium into the pulmonary artery and pulmonary epithelium into the trachea.
(D) After 4 to 8 days of culture, the engineered lung is removed from the bioreactor and is suitable for
implantation into (E) the syngeneic rat recipient.
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CorreCtions & CLarIfICatIoNS

Erratum
Research Article: “Quantifying E. coli proteome and transcriptome with single-molecule 
sensitivity in single cells” by Y. Taniguchi et al. (30 July 2010, p. 533). The authors clarify 
that the yellow fluorescent protein used in the paper is the Venus variant, created by the 
Miyawaki laboratory [T. Nagai et al., Nature Biotechnol. 20, 87 (2002)].
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